Question:
The minimum value of the function $f(x)=2 x^{3}-21 x^{2}+36 x-20$ is
(a) $-128$
(b) $-126$
(c) $-120$
(d) none of these
Solution:
(a) $-128$
Given : $f(x)=2 x^{3}-21 x^{2}+36 x-20$
$\Rightarrow f^{\prime}(x)=6 x^{2}-42 x+36$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-42 x+36=0$
$\Rightarrow x^{2}-7 x+6=0$
$\Rightarrow(x-1)(x-6)=0$
$\Rightarrow x=1,6$
Now,
$f^{\prime \prime}(x)=12 x-42$
$\Rightarrow f^{\prime \prime}(1)=12-42=-30<0$
So, $x=1$ is a local maxima.
Also,
$f^{\prime \prime}(6)=72-42=30>0$
So, $x=6$ is a local miniima.
The local minimum value is given by
$f(6)==2(6)^{3}-21(6)^{2}+36(6)-20=-128$