Question:
The minimum value of the expression 3x + 31 – x, x ∈ R, is __________.
Solution:
Minimum value of 3x + 31 – x ; x ∈ R
Since arithmetic mean ≥ geometric mean of 3x and 31 – x
$\therefore \frac{3 x+3^{1-x}}{2} \geq \sqrt{3^{x} 3^{1-x}}$
i. e $\frac{3^{x}+3^{1-x}}{2} \geq \sqrt{3^{x} 33^{-x}}$
i. e $\frac{3^{x}+3^{1-x}}{2}=\sqrt{3}$
i. e $3^{x}+3^{1-x} \geq 2 \sqrt{3}$
i.e minimum possible value of $3^{x}+3^{1-x}$ is $2 \sqrt{3}$.