The minimum value of 4 cos x – 3 sin x + 7 is _________.
$4 \cos x-3 \sin x+7$
Express $4 \cos x-3 \sin x$ as $a \cos (x+A)$
i. e. $4 \cos x-3 \sin x=a[\cos x \cos A-\sin x \sin A]$
on compairing coefficients of $\sin x$ and $\cos x$,
we get,
$4=a \cos A$ and $-3=-a \sin A$
i.e. $a \cos A=4$ and $a \sin A=3$
i. e. $\frac{a \sin A}{a \cos A}=\frac{3}{4}$
i.e. $\tan A=\frac{3}{4}$
i.e. $A=\tan ^{-1}\left(\frac{3}{4}\right)$
and $(a \sin A)^{2}+(a \cos A)^{2}=9+16$
$a^{2}\left(\sin ^{2} A+\cos ^{2} A\right)=25$
i. e. $a^{2}=25$
i. e. $a=5$
$\therefore 4 \cos x-3 \sin x+7=5 \cos \left(x+\tan ^{-1}\left(\frac{3}{4}\right)+7\right)$
Since $\cos \theta=-1$ is minimum value of $\cos$
$\Rightarrow 4 \cos x-3 \sin x+7=5(-1)+7$
Minimum values for $4 \cos -3 \sin x+7=2$.