The minimum value of 3 cos x + 4 sin x + 8 is
(a) 5
(b) 9
(c) 7
(d) 3
$3 \cos x+4 \sin x+8$
first express $3 \cos x+4 \sin x$ as a $\cos (x+A)$
$3 \cos x+4 \sin x=a[\cos x \cos A-\sin x \sin A]$
i. e $3 \cos x+4 \sin x=a \cos x \cos A-a \sin x \sin A$
Now, equate the coefficients of $\sin x$ and $\cos x$ we get,
$a \cos A=3$
and $-a \sin A=4$
i. e $\frac{a \sin A}{a \cos A}=\frac{-4}{3}$
i. e $\tan A=\frac{-4}{3}$
i. e $A=\tan ^{-1}\left(\frac{-4}{3}\right)$
also, $(a \cos A)^{2}+(a \sin A)^{2}=9+16=25$
i. e $a^{2}=25$
i. e $a=5$
$\Rightarrow 3 \cos x+4 \sin x=5 \cos \left(x-\tan ^{-1}\left(\frac{-4}{3}\right)\right)$
i. e $3 \cos x+4 \sin x+8=5 \cos \left(x-\tan ^{-1}\left(\frac{-4}{3}\right)\right)+8$
Since minimum value of $\cos \theta=-1$
$\Rightarrow(3 \cos x+4 \sin x+8) \min =5(-1)+8$
i. e Minimum vlaue of $3 \cos x+4 \sin x+8=3$
Hence, the correct answer is option D.