Question:
The minimum value of $\frac{x}{\log _{e} x}$ is
(a) $\mathrm{e}$
(b) $1 / e$
(c) 1
(d) none of these
Solution:
$(a) e$
Given: $f(x)=\frac{x}{\log _{e} x}$
$\Rightarrow f^{\prime}(x)=\frac{\log _{e} x-1}{\left(\log _{e} x\right)^{2}}$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow \frac{\log _{e} x-1}{\left(\log _{e} x\right)^{2}}=0$
$\Rightarrow \log _{e} x-1=0$
$\Rightarrow \log _{e} x=1$
$\Rightarrow x=e$
Now,
$f^{\prime \prime}(x)=\frac{-1}{x\left(\log _{e} x\right)^{2}}+\frac{2}{x\left(\log _{e} x\right)^{3}}$
$\Rightarrow f^{\prime}(e)=\frac{-1}{e}+\frac{2}{e}=\frac{1}{e}>0$
So, $x=e$ is a local minima.
$\therefore$ Minimum value of $f(x)=\frac{e}{\log _{e} e}=e$