Question:
The minimum value of $\mathrm{f}(\mathrm{x})=x 4-x 2-2 x+6$ is
(a) 6
(b) 4
(c) 8
(d) none of these
Solution:
(b) 4
Given : $f(x)=x^{4}-x^{2}-2 x+6$
$\Rightarrow f^{\prime}(x)=4 x^{3}-2 x-2$
$\Rightarrow f^{\prime}(x)=(x-1)\left(4 x^{2}+4 x+2\right)$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow(x-1)\left(4 x^{2}+4 x+2\right)=0$
$\Rightarrow(x-1)=0$
$\Rightarrow x=1$
Now,
$f^{\prime \prime}(x)=12 x^{2}-2$
$\Rightarrow f^{\prime \prime}(1)=12-2=10>0$
So, $x=1$ is a local minima.
The local minimum value is given by
$f(1)=1-1-2+6=4$