Question:
The minimum value of $\left(x^{2}+\frac{250}{x}\right)$ is
(a) 75
(b) 50
(c) 25
(d) 55
Solution:
(a) 75
Given : $f(x)=x^{2}+\frac{250}{x}$
$\Rightarrow f^{\prime}(x)=2 x-\frac{250}{x^{2}}$
For a local maxima or a local minima, we must have'
$f^{\prime}(x)=0$
$\Rightarrow 2 x-\frac{250}{x^{2}}=0$
$\Rightarrow 2 x^{3}-250=0$
$\Rightarrow x^{3}=125$
$\Rightarrow x=5$
Now,
$f^{\prime \prime}(x)=2+\frac{500}{x^{3}}$
$\Rightarrow f^{\prime \prime}(5)=2+\frac{500}{5^{3}}=\frac{750}{125}=6>0$
So, $x=5$ is a local minima.
$\therefore f^{\prime}(x)_{\min }=5^{2}+\frac{250}{5}=\frac{375}{5}=75$