The minimum value of $f(x)=\sin x$ in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ isThe minimum value of $f(x)=\sin x$ in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is_________
The given function is $f(x)=\sin x, x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
$f(x)=\sin x$
Differentiating both sides with respect to x, we get
$f^{\prime}(x)=\cos x$
For maxima or minima,
$f^{\prime}(x)=0$
$\Rightarrow \cos x=0$
$\Rightarrow x=-\frac{\pi}{2}$ or $x=\frac{\pi}{2}$, for all $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Now,
$f^{\prime \prime}(x)=-\sin x$
At $x=\frac{\pi}{2}$, we have
$f^{\prime \prime}\left(\frac{\pi}{2}\right)=-\sin \frac{\pi}{2}=-1<0$
So, $x=\frac{\pi}{2}$ is the point of local maximum of $f(x)$.
At $x=-\frac{\pi}{2}$, we have
$f^{\prime \prime}\left(-\frac{\pi}{2}\right)=-\sin \left(-\frac{\pi}{2}\right)=\sin \frac{\pi}{2}=1>0$ $[\sin (-\theta)=-\sin \theta]$
So, $x=-\frac{\pi}{2}$ is the point of local minimum of $f(x)$.
$\therefore$ Minimum value of $f(x)=f\left(-\frac{\pi}{2}\right)=\sin \left(-\frac{\pi}{2}\right)=-\sin \frac{\pi}{2}=-1$
Thus, the minimum value of $f(x)=\sin x$ in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is $-1$.
The minimum value of $f(x)=\sin x$ in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is ___−1___.