The minimum and maximum

Question:

The minimum and maximum distances of a planet revolving around the Sun are $x_{1}$ and $x_{2}$. If the minimum speed of the planet on its trajectory is $v_{0}$ then its maximum speed will be :

  1. $\frac{\mathrm{v}_{0} \mathrm{x}_{1}^{2}}{\mathrm{x}_{2}^{2}}$

  2. $\frac{\mathrm{v}_{0} \mathrm{x}_{2}^{2}}{\mathrm{x}_{1}^{2}}$

  3. $\frac{\mathrm{V}_{0} \mathrm{x}_{1}}{\mathrm{x}_{2}}$

  4. $\frac{\mathrm{V}_{0} \mathrm{X}_{2}}{\mathrm{X}_{1}}$


Correct Option: , 4

Solution:

Angular momentum conservation equation

$\mathrm{V}_{0} \mathrm{X}_{2}=\mathrm{V}_{1} \mathrm{X}_{1}$

$\mathrm{~V}_{1}=\frac{\mathrm{V}_{0} \mathrm{X}_{2}}{\mathrm{X}_{1}}$

Leave a comment