Question:
The mean of five observations is 5 and their variance is 9.20. If three of the given five observations are 1,3 and 8, then a ratio of other two observations is :
Correct Option: 1
Solution:
Let two observations are $\mathrm{x}_{1}$ \& $\mathrm{x}_{2}$
mean $=\frac{\sum \mathrm{x}_{\mathrm{i}}}{5}=5 \Rightarrow 1+3+8+\mathrm{x}_{1}+\mathrm{x}_{2}=25$
$\Rightarrow x_{1}+x_{2}=13$ ..................(1)
variance $\left(\sigma^{2}\right)=\frac{\sum x_{i}^{2}}{5}-25=9.20$
$\Rightarrow \sum x_{\mathrm{i}}^{2}=171$
$\Rightarrow x_{1}^{2}+x_{2}^{2}=97$ .................(2)
by (1) \& (2)
$\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)^{2}-2 \mathrm{x}_{1} \mathrm{x}_{2}=97$
or $x_{1} x_{2}=36$
$\therefore \quad x_{1}: x_{2}=4: 9$