Question:
The mean of first $n$ odd natural numbers is $\frac{n^{2}}{81}$, then $n=$
(a) 9
(b) 81
(c) 27
(d) 18
Solution:
The first n odd natural numbers are 1, 3, 5, ... , (2n − 1).
$\therefore$ Mean of first $n$ odd natural numbers
$=\frac{1+3+5+\ldots+(2 n-1)}{n}$
$=\frac{\frac{n}{2}(1+2 n-1)}{n} \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{2 n}{2}$
$=n$
Now,
Mean of first $n$ odd natural numbers $=\frac{n^{2}}{81}$ (Given)
$\therefore n=\frac{n^{2}}{81}$
$\Rightarrow n=81$
Hence, the correct option is (b).