Question:
The mean of 20 numbers is 43. If 6 is subtracted from each of the numbers, what will be the new mean?
Solution:
Let the numbers be $x_{1}, x_{2}, \ldots x_{20}$.
We know:
Mean $=\frac{\text { Sum of observations }}{\text { Number of observations }}$
Thus, we have:
$43=\frac{x_{1}+x_{2}+\ldots \ldots+x_{20}}{20}$
$\Rightarrow 860=x_{1}+x_{2}+\ldots \ldots+x_{20} \ldots \ldots$ (i)
Numbers after subtraction: $\left(x_{1}-6\right),\left(x_{2}-6\right), \ldots\left(x_{20}-6\right)$
$\therefore$ New Mean $=\frac{\left(x_{1}-6\right)+\left(x_{2}-6\right)+\ldots \ldots . .+\left(x_{20}-6\right)}{20}$
$=\frac{\left(x_{1}+x_{2}+\ldots \ldots \ldots+x_{20}\right)-(20 \times 6)}{20}$
$=\frac{860-120}{20} \quad[$ From $(\mathrm{i})]$
$=37$