The mean of 20 numbers is 18. If 3 is added to each of the first ten numbers, find the mean of the new set of 20 numbers.
Let the numbers be x1, x2,...x20.
We know
Mean $=\frac{\text { Sum of observa tions }}{\text { Number of observations }}$
Thus, we have:
$18=\frac{x_{1}+x_{2}+\ldots \ldots+x_{20}}{20}$
$\Rightarrow x_{1}+x_{2}+\ldots \ldots+x_{20}=360 \quad \ldots \ldots$ (i)
New numbers are:
$\left(x_{1}+3\right),\left(x_{2}+3\right), \ldots\left(x_{10}+3\right), x_{11}, \ldots x_{20}$
New Mean:
$=\frac{\left(x_{1}+3\right)+\left(x_{2}+3\right)+\ldots \ldots . .+\left(x_{10}+3\right)+x_{11}+\ldots \ldots . .+x_{20}}{20}$
$=\frac{\left(x_{1}+x_{2}+\ldots . .+x_{10}\right)+(3 \times 10)+x_{11}+\ldots \ldots . .+x_{20}}{20}$
$=\frac{\left(x_{1}+x_{2}+\ldots \ldots+x_{20}\right)+30}{20}$
$=\frac{360+30}{20} \quad[$ From (i) $]$
$=19,5$