Question:
The mean and variance of 7 observations are 8 and 16 respectively. If two observations are 6 and 8 , then the variance of the remaining 5 observations is:
Correct Option: , 3
Solution:
Let $8,16, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be the observations.
Now $\frac{x_{1}+x_{2}+\ldots+x_{5}+14}{7}=8$
$\Rightarrow \sum_{i=1}^{5} x_{i}=42$ ..........(1)
Also $\frac{x_{1}^{2}+x_{2}^{2}+\ldots x_{5}^{2}+8^{2}+6^{2}}{7}-64=16$
$\Rightarrow \sum_{i=1}^{5} x_{i}^{2}=560-100=460$ ..........(2)
So variance of $x_{1}, x_{2}, \ldots, x_{s}$
$=\frac{460}{5}-\left(\frac{42}{5}\right)^{2}=\frac{2300-1764}{25}=\frac{536}{25}$