The mean and standard deviations of a group of 100 observations were found to be 20 and 3 respectively.
The mean and standard deviations of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations 21, 12 and 18 were incorrect. Find the mean and standard deviation if the incorrect observations were omitted.
Given that number of observations (n) = 100
Incorrect Mean $(\bar{x})=20$
and Incorrect Standard deviation, $(\sigma)=3$
We know that,
$\overline{\mathrm{x}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}$
$\Rightarrow 20=\frac{1}{100} \sum x_{i}$
$\Rightarrow 20 \times 100=\sum x_{i}$
$\Rightarrow 2000=\sum x_{i}$
$\Rightarrow \sum x_{i}=2000$ ...........(i)
$\therefore$ Incorrect sum of observations $=2000$
Finding correct sum of observations, incorrect observations 21,12 and 18 are removed
So, Correct sum of observations = Incorrect Sum $-21-12-18$
$=2000-51$
$=1949$
Hence,
Correct Mean $=\frac{\text { Correct Sum of Observations }}{\text { Total number of observations }}$
$=\frac{1949}{100-3}$
$=\frac{1949}{97}$
$=20.09$
Now, Incorrect Standard Deviation ( $\sigma$ )
$=\frac{1}{\mathrm{~N}} \sqrt{\mathrm{N} \times\left(\text { Incorrect } \sum \mathrm{x}_{\mathrm{i}}{ }^{2}\right)-\left(\text { Incorrect } \sum \mathrm{x}_{\mathrm{i}}\right)^{2}}$
$3=\frac{1}{100} \sqrt{100 \times\left(\text { Incorrect } \sum \mathrm{x}_{\mathrm{i}}{ }^{2}\right)-(2000)^{2}}$
$3 \times 100=\sqrt{100 \times\left(\text { Incorrect } \sum x_{i}^{2}\right)-4000000}$
$300=\sqrt{100 \times\left(\text { Incorrect } \sum x_{i}^{2}\right)-4000000}$
Squaring both the sides, we get
$(300)^{2}=100 \times\left(\right.$ Incorrect $\left.\sum x_{i}^{2}\right)-4000000$
$\Rightarrow 90000=100 \times\left(\right.$ Incorrect $\left.\sum x_{i}^{2}\right)-4000000$
$\Rightarrow 90000+4000000=100 \times\left(\right.$ Incorrect $\left.\sum x_{i}^{2}\right)$
$\Rightarrow 4090000=100 \times\left(\right.$ Incorrect $\left.\sum x_{i}^{2}\right)$
$\Rightarrow \frac{4090000}{100}=\left(\right.$ Incorrect $\left.\sum x_{i}^{2}\right)$
$\Rightarrow 40900=\left(\right.$ Incorrect $\left.\sum x_{i}{ }^{2}\right)$
Since, 21, 12 and 18 are removed
So,
Correct $\sum x_{i}^{2}=40900-(21)^{2}-(12)^{2}-(18)^{2}$
$=40900-441-144-324$
$=40900-909$
$=39991$
Now,
Correct Standard Deviation
$=\sqrt{\frac{\left(\text { Correct } \sum x_{i}^{2}\right)}{N}-\left(\frac{\text { Correct } \sum x_{i}}{N}\right)^{2}}$
$=\sqrt{\frac{39991}{97}-(20.09)^{2}}$
$\left[\because \overline{\mathrm{x}}=\frac{\text { Correct } \sum \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}=20.09\right]$
$=\sqrt{412.27-403.60}$
$=\sqrt{8.67}$
$=2.94$
Hence, Correct Mean $=20.09$
and Correct Standard Deviation $=2.94$