The maximum value of the function

Question:

The maximum value of the function

$f(x)=3 x^{3}-18 x^{2}+27 x-40$ on the set

$S=\left\{x \in R: x^{2}+30 \leq 11 x\right\}$ is :

  1. 122

  2. –222

  3. –122

  4. 222


Correct Option: 1

Solution:

$\mathrm{S}=\left\{\mathrm{x} \in \mathrm{R}, \mathrm{x}^{2}+30-11 \mathrm{x} \leq 0\right\}$

$=\{x \in R, 5 \leq x \leq 6\}$

Now $f(x)=3 x^{3}-18 x^{2}+27 x-40$

$\Rightarrow f^{\prime}(x)=9(x-1)(x-3)$,

which is positive in $[5,6]$

$\Rightarrow f(x)$ increasing in $[5,6]$

Hence maximum value $=f(6)=122$

Leave a comment