The maximum value of sin x cos x is
Let $f(x)=\sin x \cos x$
$\Rightarrow f(x)=\frac{1}{2} \sin 2 x$
Differentiating both sides with respect to $x$, we get
$f^{\prime}(x)=\frac{1}{2} \cos 2 x \times 2=\cos 2 x$
For maxima or minima,
$f^{\prime}(x)=0$
$\Rightarrow \cos 2 x=0$
$\Rightarrow 2 x=\frac{\pi}{2}$
$\Rightarrow x=\frac{\pi}{4}$
Now,
$f^{\prime \prime}(x)=-2 \sin 2 x$
$\Rightarrow f^{\prime \prime}\left(\frac{\pi}{4}\right)=-2 \sin \left(2 \times \frac{\pi}{4}\right)=-2 \sin \frac{\pi}{2}=-2<0$
So, $x=\frac{\pi}{4}$ is the point of local maximum.
∴ Maximum value of f(x)
$=f\left(\frac{\pi}{4}\right)$
$=\frac{1}{2} \sin \left(2 \times \frac{\pi}{4}\right)$
$=\frac{1}{2} \sin \frac{\pi}{2}$
$=\frac{1}{2} \times 1$
$=\frac{1}{2}$
Thus, the maximum value of $\sin x \cos x$ is $\frac{1}{2}$.
Hence, the correct answer is option (b).