The maximum value of 3 cos x + 4 sin x + 5 is _________.
$3 \cos x+4 \sin x+5$
first express $3 \cos x+4 \sin x$ as $a \cos (x+A)$
i. e. $3 \cos x+4 \sin x=a[\cos x \cos A-\sin x \sin A]$
Now, equate the coefficients of $\sin x$ and $\cos x$
We get,
$a \cos A=3$
$-a \sin A=4$
i. e $\frac{a \sin A}{a \cos A}=\frac{-4}{3}$ i. e $\tan A=-\frac{4}{3}$
i. e $A=\tan ^{-1}\left(\frac{-4}{3}\right)$
also $(a \cos A)^{2}+(a \sin A)^{2}=9+16=25$
$a^{2}=25$
$a=5$
$\therefore 3 \cos x+4 \sin x=5 \cos \left(x-\tan ^{-1}\left(-\frac{4}{3}\right)\right)$
i. e. $3 \cos x+4 \sin x+5=5 \cos \left(x-\tan ^{-1}\left(-\frac{4}{3}\right)\right)+5$
Since minimum value of $\cos \theta=-1$
$\Rightarrow(3 \cos x+4 \sin x+5)_{\min }=5(-1)+5$
$=-5+5=0$
i. e minimum value of $3 \cos x+4 \sin x+5=0$