The maximum value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right|$ is________
Let $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right|$
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1-1 & 1+\sin \theta-1 & 1-1 \\ 1-1 & 1-1 & 1+\cos \theta-1\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & \sin \theta & 0 \\ 0 & 0 & \cos \theta\end{array}\right|$
Expanding along $C_{1}$
$=1(\sin \theta \cos \theta)$
$=\frac{2 \sin \theta \cos \theta}{2}$
$=\frac{\sin 2 \theta}{2}$
But, $\sin 2 \theta \leq 1$
$\Rightarrow \frac{\sin 2 \theta}{2} \leq \frac{1}{2}$
Hence, the maximum value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right|$ is $\underline{\frac{1}{2}}$.