Question:
The maximum value of $\mathrm{f}(\mathrm{x})=\frac{x}{4+x+x^{2}}$ on $[-1,1]$ is
(a) $-\frac{1}{4}$
(b) $-\frac{1}{3}$
(C) $\frac{1}{6}$
(d) $\frac{1}{5}$
Solution:
(C) $\frac{1}{6}$
Given : $f(x)=\frac{x}{4+x+x^{2}}$
$\Rightarrow f^{\prime}(x)=\frac{4+x+x^{2}-x(1+2 x)}{\left(4+x+x^{2}\right)^{2}}$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow \frac{4+x+x^{2}-x(1+2 x)}{\left(4+x+x^{2}\right)^{2}}=0$
$\Rightarrow 4+x+x^{2}-x(1+2 x)=0$
$\Rightarrow 4-x^{2}=0$
$\Rightarrow x=\pm 2 \notin[-1,1]$
The values of $f(x)$ at extreme points are given by
$f(1)=\frac{1}{4+1+1^{2}}=\frac{1}{6}$
$f(-1)=\frac{-1}{4-1+(-1)^{2}}=\frac{-1}{4}$
Thus, $\frac{1}{6}$ is the maximum value.