The maximum value

Question:

The maximum value of $f(x)=\frac{x}{4-x+x^{2}}$ on $[-1,1]$ is

(a) $-\frac{1}{4}$

(b) $-\frac{1}{3}$

(C) $\frac{1}{6}$

(d) $\frac{1}{5}$

Solution:

Given : $f(x)=\frac{x}{4-x+x^{2}}$

$\Rightarrow f^{\prime}(x)=\frac{4-x+x^{2}-x(-1+2 x)}{\left(4-x+x^{2}\right)^{2}}$

For a local maxima or a local minima, we must have

$f^{\prime}(x)=0$

$\Rightarrow \frac{4-x+x^{2}-x(-1+2 x)}{\left(4-x+x^{2}\right)^{2}}=0$

$\Rightarrow 4-x+x^{2}-x(-1+2 x)=0$

$\Rightarrow 4-x+x^{2}+x-2 x^{2}=0$

$\Rightarrow x^{2}=4$

$\Rightarrow x=\pm 2 \notin[-1,1]$

So,

$f(-1)=\frac{-1}{4-(-1)+(-1)^{2}}=\frac{-1}{6}$

$f(1)=\frac{1}{4-1+1^{2}}=\frac{1}{4}$

Hence, the maximum value is $\frac{1}{4}$.

Disclaimer: The question in the book has some error. So, none of the options are matching with the solution. The solution here is according to the question given in the book.

Leave a comment