The maximum value of $f(x)=x e^{-x}$ is___________
The given function is $f(x)=x e^{-x}$.
$f(x)=x e^{-x}$
Differentiating both sides with respect to x, we get
$f^{\prime}(x)=x \times e^{-x} \times(-1)+e^{-x} \times 1$
$\Rightarrow f^{\prime}(x)=e^{-x}(-x+1)$
For maxima or minima,
$f^{\prime}(x)=0$
$\Rightarrow e^{-x}(-x+1)=0$
$\Rightarrow-x+1=0$ $\left(e^{-x}>0 \forall x \in \mathrm{R}\right)$
$\Rightarrow x=1$
Now,
$f^{\prime \prime}(x)=e^{-x} \times(-1)+(-x+1) \times e^{-x} \times(-1)$
$\Rightarrow f^{\prime \prime}(x)=e^{-x}(x-2)$
At x = 1, we have
$f^{\prime \prime}(1)=e^{-1}(1-2)=-\frac{1}{e}<0$
So, $x=1$ is the point of local maximum of $f(x)$.
$\therefore$ Maximum value of $f(x)=f(1)=1 \times e^{-1}=\frac{1}{e}$
Thus, the maximum value of $f(x)=x e^{-x}$ is $\frac{1}{e}$.
The maximum value of $f(x)=x e^{-x}$ is $\frac{1}{e}$