The maximum value of $x^{1 / x}, x>0$ is
(a) $e^{1 / e}$
(b) $\left(\frac{1}{e}\right)^{e}$
(c) 1
(d) none of these
(a) $e^{\frac{1}{e}}$
Given : $f(x)=x^{\frac{1}{x}}$
Taking log on both sides, we get
$\log f(x)=\frac{1}{x} \log x$
Differentiating w.r.t. $x$, we get
$\frac{1}{f(x)} f^{\prime}(x)=\frac{-1}{x^{2}} \log x+\frac{1}{x^{2}}$
$\Rightarrow f^{\prime}(x)=f(x) \frac{1}{x^{2}}(1-\log x)$
$\Rightarrow f^{\prime}(x)=x^{\frac{1}{x}}\left(\frac{1}{x^{2}}-\frac{1}{x^{2}} \log x\right)$ .......(1)
$\Rightarrow f^{\prime}(x)=x^{\frac{1}{x}-2}(1-\log x)$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow x^{\frac{1}{x}-2}(1-\log x)=0$
$\Rightarrow \log x=1$
$\Rightarrow x=e$
Now,
$f^{\prime \prime}(x)=x^{\frac{1}{x}}\left(\frac{1}{x^{2}}-\frac{1}{x^{2}} \log x\right)^{2}+x^{\frac{1}{x}}\left(\frac{-2}{x^{3}}+\frac{2}{x^{3}} \log x-\frac{1}{x^{3}}\right)=x^{\frac{1}{x}}\left(\frac{1}{x^{2}}-\frac{1}{x^{2}} \log x\right)^{2}+x^{\frac{1}{x}}\left(-\frac{3}{x^{3}}+\frac{2}{x^{3}} \log x\right)$
At $x=e:$
$f^{\prime \prime}(e)=e^{\frac{1}{e}}\left(\frac{1}{e^{2}}-\frac{1}{e^{2}} \log e\right)^{2}+e^{\frac{1}{e}}\left(-\frac{3}{e^{3}}+\frac{2}{e^{3}} \log e\right)=-e^{\frac{1}{e}}\left(\frac{1}{e^{3}}\right)<0$
So, $x=e$ is a point of local maxima.
$\therefore$ Maximum value $=f(e)=e^{\frac{1}{e}}$
Disclaimer: The answer given in the book is incorrect. The solution provided here is according to the question.