The maximum slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is ___________
The given curve is $y=-x^{3}+3 x^{2}+9 x-27$.
Slope of the curve, $m=\frac{d y}{d x}$
$\therefore m=\frac{d y}{d x}=-3 x^{2}+6 x+9$
Differentiating both sides with respect to x, we get
$\frac{d m}{d x}=-6 x+6$
For maxima or minima,
$\frac{d m}{d x}=0$
$\Rightarrow-6 x+6=0$
$\Rightarrow x=1$
Now,
$\frac{d^{2} m}{d x^{2}}=-6<0$
So, x = 1 is the point of local maximum.
Thus, the slope of the given curve is maximum when x = 1.
∴ Maximum value of the slope
$=-3 \times(1)^{2}+6 \times 1+9$ $\left(\right.$ Slope, $\left.m=-3 x^{2}+6 x+9\right)$
$=-3+6+9$
$=12$
Hence, the maximum slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is 12 .
The maximum slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is ___12___