The mass density of a planet of radius

Question:

The mass density of a planet of radius $\mathrm{R}$ varies with the distance $r$ from its centre as

$\rho(r)=\rho_{0}\left(1-\frac{r^{2}}{R^{2}}\right) .$ Then the gravitational field

is maximum at:

  1. $r=\frac{1}{\sqrt{3}} R$

  2. $r=\sqrt{\frac{5}{9}} R$

  3. $r=\sqrt{\frac{3}{4}} R$

  4. $r=R$


Correct Option: , 2

Solution:

E $4 \pi r^{2}=\int \rho_{0} 4 \pi r^{2} d r$

$\Rightarrow \mathrm{Er}^{2}=4 \pi \mathrm{G} \int_{0}^{r} \rho_{0}\left(1-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right) \mathrm{r}^{2} \mathrm{dr}$

$\Rightarrow \mathrm{E}=4 \pi \mathrm{G} \rho_{0}\left(\frac{\mathrm{r}^{3}}{3}-\frac{\mathrm{r}^{5}}{5 \mathrm{R}^{2}}\right)$

$\frac{\mathrm{dE}}{\mathrm{dr}}=0 \quad \therefore \mathrm{r}=\sqrt{\frac{5}{9}} \mathrm{R}$

Leave a comment