Question:
The longer side of a rectangular hall is 24 m and the length of its diagonal is 26 m. Find the area of the hall.
Solution:
Let the rectangle ABCD represent the hall.
Using the Pythagorean theorem in the right-angled triangle ABC, we have:
Diagonal $^{2}=$ Length $^{2}+$ Breadth $^{2}$
$\Rightarrow$ Breadth $=\sqrt{\text { Diagonal }^{2}-\text { Length }^{2}}$
$=\sqrt{26^{2}-24^{2}}$
$=\sqrt{676-576}$
$=\sqrt{100}$
$=10 \mathrm{~m}$
$\therefore$ Area of the hall $=$ Length $\times$ Breadth $=24 \times 10=240 \mathrm{~m}^{2}$