Question:
The locus of the mid-points of the perpendiculars drawn from points on the line, $x=2 y$ to the line $x=y$ is:
Correct Option: , 2
Solution:
Since, slope of $P Q=\frac{k-\alpha}{h-2 \alpha}=-1$
$\Rightarrow \quad k-\alpha=-h+2 \alpha$
$\Rightarrow \alpha=\frac{h+k}{3}$
Also, $2 h=2 \alpha+\beta$ and
$2 k=\alpha+\beta$
$\Rightarrow \quad 2 h=\alpha+2 k$
$\Rightarrow \quad \alpha=2 h-2 k$
From (i) and (ii), we have
$\frac{h+k}{3}=2(h-k)$
So, locus is $6 x-6 y=x+y$
$\Rightarrow 5 x=7 y \Rightarrow 5 x-7 y=0$