The local maximum value of the function
$f(x)=\left(\frac{2}{x}\right)^{x^{2}}, x>0$, is
Correct Option: , 3
$f(x)=\left(\frac{2}{x}\right)^{x^{2}} ; x>0$
$\ell \mathrm{n} \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}(\ell \mathrm{n} 2-\ell \mathrm{n} \mathrm{x})$
$f^{\prime}(x)=f(x)\{-x+(\ln 2-\ln x) 2 x\}$
$f^{\prime}(x)=\underbrace{f(x)}_{+} \cdot \underbrace{x}_{+} \underbrace{(2 \ell \operatorname{n} 2-2 \ell n x-1)}_{g(x)}$
$\mathrm{g}(\mathrm{x})=2 \ell \mathrm{n}^{2}-2 \ell \mathrm{n} \mathrm{x}-1$
$=\ell \mathrm{n} \frac{4}{\mathrm{x}^{2}}-1=0 \Rightarrow \mathrm{x}=\frac{2}{\sqrt{\mathrm{e}}}$
$\mathrm{LM}=\frac{2}{\sqrt{\mathrm{e}}}$
Local maximum value $=\left(\frac{2}{2 / \sqrt{\mathrm{e}}}\right)^{\frac{4}{\mathrm{e}}} \Rightarrow \mathrm{e}^{\frac{2}{\mathrm{c}}}$