The line $y=m x+1$ is a tangent to the curve $y^{2}=4 x$, if the value of $m$ is
A. 1
B. 2
C. 3
D. $\frac{1}{2}$
It is given that the line $y=m x+1$ is a tangent to the curve $y^{2}=4 x$.
Slope of the line $=\mathrm{m}$
Slope of the curve $\frac{d y}{d x}$,
Differentiating the curve we get
$2 y \frac{d y}{d x}=4$
$\Rightarrow \frac{d y}{d x}=\frac{2}{y}$
$\Rightarrow \frac{2}{y}=m$
$\Rightarrow y=\frac{2}{m}$
$\because$ The given line is a tangent to the curve so the point passes through both line and curve.
$\Rightarrow y=m x+1$ and $y^{2}=4 x$
$\Rightarrow \frac{2}{m}=m x+1$ and $\frac{4}{m^{2}}=4 x$
$\Rightarrow m x=\frac{2-m}{m}$ and $x=\frac{1}{m^{2}}$
$\Rightarrow x=\frac{2-m}{m^{2}}$ and $x=\frac{1}{m^{2}}$
$\Rightarrow \frac{2-m}{m^{2}}=\frac{1}{m^{2}}$
$\Rightarrow 2-m=1$
$\Rightarrow m=1$
Hence, the correct option is A.