The lengths of the diagonals of a rhombus are 16 cm and 12 cm respectively. Find the length of each of its sides.
Let $A B C D$ be a rhombus.
$L$ et $A C$ and $B D$ be the diagonals of the rhombus intersecting at a point $O$.
Let $A C=16 \mathrm{~cm}$
$\mathrm{BD}=12 \mathrm{~cm}$
We know that the diagonals of a rhombus bisect each other at right angles.
$\therefore A O=\frac{1}{2} A C$
$\quad=\left(\frac{1}{2} \times 16\right) \mathrm{cm}$
$\quad=8 \mathrm{~cm}$
$B O=\frac{1}{2} B D$
$\quad=\left(\frac{1}{2} \times 12\right) \mathrm{cm}$
$\quad=6 \mathrm{~cm}$ From the right $\Delta A O B:$
$A B^{2}=A O^{2}+B O^{2}$
$=\left\{(8)^{2}+(6)^{2}\right\} \mathrm{cm}^{2}$
$=(64+36) \mathrm{cm}^{2}$
$=100 \mathrm{~cm}^{2}$
$\Rightarrow A B=\sqrt{100} \mathrm{~cm}$
$=10 \mathrm{~cm}$
Hence, the length of the side $A B$ is $10 \mathrm{~cm}$.
$A B=B C=C D=D A=10 \mathrm{~cm} \quad$ (all sides of a rhombus are equal)