Question:
The length of the perpendicular from the point $(2,-1,4)$ on the straight line, $\frac{x+3}{10}=\frac{y-2}{-7}=\frac{z}{1}$ is :
Correct Option: 1,
Solution:
Let $P$ be the foot of perpendicular from point
$T(2,-1,4)$ on the given line. So $P$ can be assumed as
$P(10 \lambda-3,-7 \lambda+2, \lambda)$
DR's of $T P$ is proportional to $10 \lambda-5,-7 \lambda+3, \lambda-4$
$\because \quad T P$ and given line are
perpendicular, so
$10(10 \lambda-5)-7(-7 \lambda+3)+1(\lambda-4)=0$
$\Rightarrow \lambda=\frac{1}{2}$
$\Rightarrow T P=\sqrt{(10 \lambda-5)^{2}+(-7 \lambda+3)^{2}+(\lambda-4)^{2}}$
$=\sqrt{0+\frac{1}{4}+\frac{49}{4}}=\sqrt{12.5}=3.54$
Hence, the length of perpendicular is greater than 3 but less than $4 .$