Question:
The length of shadow of a tower on the plane ground is $\sqrt{3}$ times the height of the tower. The angle of elevation of sun is
(a) 45° (b) 30° (c) 60° (d) 90° [CBSE 2012]
Solution:
Let the angle of elevation of the sun be θ.
Suppose AB is the height of the tower and BC is the length of its shadow.
It is given that, $\mathrm{BC}=\sqrt{3} \mathrm{AB}$
In right ∆ABC,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \tan \theta=\frac{\mathrm{AB}}{\sqrt{3} \mathrm{AB}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ}$
$\Rightarrow \theta=30^{\circ}$
Thus, the angle of elevation of the sun is 30º.
Hence, the correct answer is option B.