Question:
The length of an arc of a circle, subtending an angle of 54° at the centre, is 16.5 cm. Calculate the radius, circumference and area of the circle.
Solution:
Length of the arc = 16.5 cm
$\theta=54^{\circ}$
Radius = ?
Circumference=?
We know:
Length of the $\operatorname{arc}=\frac{2 \pi \mathrm{r} \theta}{360}$
$\Rightarrow 16.5=\frac{2 \times \frac{22}{7} \times r \times 54}{360}$
$\Rightarrow r=\frac{16.5 \times 360 \times 7}{44 \times 54}$
$\Rightarrow r=17.5 \mathrm{~cm}$
$c=2 \pi \mathrm{r}$
$=2 \times \frac{22}{7} \times 17.5$
$=110 \mathrm{~cm}$
Circumference = 110 cm
Now,
Area of the circle $=\pi r^{2}$
$=\frac{22}{7} \times 17.5 \times 17.5$
$=962.5 \mathrm{~cm}^{2}$