Question:
The length of a rectangular hall is 5 m more than its breadth. If the area of the hall is 750 m2, then its length is
(a) 15 m
(b) 20 m
(c) 25 m
(d) 30 m
Solution:
(d) 30 m
Let the length of the rectangle be x m.
$\therefore$ Breadth of the rectangle $=(x-5) \mathrm{m}$
Area $=x(x-5)=x^{2}-5 x$
$\Rightarrow x^{2}-5 x=750$
$\Rightarrow x^{2}-5 x-750=0$
$\Rightarrow x^{2}-30 x+25 x-750=0$
$\Rightarrow x(x-30)+25(x-30)=0$
$\Rightarrow(x+25)(x-30)=0$
$\Rightarrow x+25=0$ and $x-30=0$
$\Rightarrow x=-25$ and $x=30$
Length cannot be negative.
∴ Length = x = 30 m