Question:
The least value of the function $\mathrm{f}(\mathrm{x})=x 3-18 x 2+96 x$ in the interval $[0,9]$ is
(a) 126
(b) 135
(c) 160
(d) 0
Solution:
(d) 0
Given: $f(x)=x^{3}-18 x^{2}+96 x$
$\Rightarrow f^{\prime}(x)=3 x^{2}-36 x+96$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 3 x^{2}-36 x+96=0$
$\Rightarrow x^{2}-12 x+32=0$
$\Rightarrow(x-4)(x-8)=0$
$\Rightarrow x=4,8$
So,
$f(8)=(8)^{3}-18(8)^{2}+96(8)=512-1152+768=128$
$f(4)=(4)^{3}-18(4)^{2}+96(4)=64-288+384=160$
$f(0)=(0)^{3}-18(0)^{2}+96(0)=0$
$f(9)=(9)^{3}-18(9)^{2}+96(9)=729-1458+864=135$
Hence, 0 is the minimum value in the range $[0,9]$.