The least value of the function $f(x)=a x+\frac{b}{x}(a>0, b>0, x>0)$ is_____________
The given function is $f(x)=a x+\frac{b}{x}(a>0, b>0, x>0)$.
$f(x)=a x+\frac{b}{x}$
Differentiating both sides with respect to x, we get
$f^{\prime}(x)=a-\frac{b}{x^{2}}$
For maxima or minima,
$f^{\prime}(x)=0$
$\Rightarrow a-\frac{b}{x^{2}}=0$
$\Rightarrow x^{2}=\frac{b}{a}$
$\Rightarrow x=\sqrt{\frac{b}{a}} \quad(x>0)$
Now,
$f^{\prime \prime}(x)=\frac{2 b}{x^{3}}$
At $x=\sqrt{\frac{b}{a}}$, we have
$f^{\prime} \prime\left(\sqrt{\frac{b}{a}}\right)=\frac{2 b}{\left(\sqrt{\frac{b}{a}}\right)^{3}}=2 a \sqrt{\frac{a}{b}}>0 \quad(a>0, b>0)$
So, $x=\sqrt{\frac{b}{a}}$ is the point of local minimum of $f(x)$. Thus, the function takes the least value at $x=\sqrt{\frac{b}{a}}$.
∴ Least value of the given function
$=f\left(\sqrt{\frac{b}{a}}\right)$
$=a \times \sqrt{\frac{b}{a}}+\frac{b}{\sqrt{\frac{b}{a}}}$ $\left[f(x)=a x+\frac{b}{x}\right]$
$=\sqrt{a b}+\sqrt{a b}$
$=2 \sqrt{a b}$
Thus, the least value of the function $f(x)=a x+\frac{b}{x}(a>0, b>0, x>0)$ is $2 \sqrt{a b}$.
The least value of the function $f(x)=a x+\frac{b}{x}(a>0, b>0, x>0)$ is $2 \sqrt{a b}$