Question:
The least value of 2 sin2θ + 3cos2θ is ___________.
Solution:
$2 \sin ^{2} \theta+3 \cos ^{2} \theta$
$=2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\cos ^{2} \theta$
$=2+\cos ^{2} \theta$
Since $-1 \leq \cos \theta \leq 1$
$\Rightarrow 0 \leq \cos ^{2} \theta \leq 1$
$\therefore 2 \sin ^{2} \theta+3 \cos ^{2} \theta \geq 2+0$
$2 \sin ^{2} \theta+3 \cos ^{2} \theta \geq 2$
i.e. least value of $2 \sin ^{2} \theta+3 \cos ^{2}$ is $2 .$