The least positive integer $n$ such that $\left(\frac{2 i}{1+i}\right)^{n}$ is a positive integer, is
(a) 16
(b) 8
(c) 4
(d) 2
(b) 8
Let $z=\left(\frac{2 i}{1+i}\right)$
$\Rightarrow z=\frac{2 i}{1+i} \times \frac{1-i}{1-i}$
$\Rightarrow z=\frac{2 i(1-i)}{1-i^{2}}$
$\Rightarrow z=\frac{2 i(1-i)}{1+1} \quad\left[\because i^{2}=-1\right]$
$\Rightarrow z=\frac{2 i(1-i)}{2}$
$\Rightarrow z=i-i^{2}$
$\Rightarrow z=i+1$
Now, $z^{n}=(1+i)^{n}$
For $n=2$,
$z^{2}=(1+i)^{2}$
$=1+i^{2}+2 i$
$=1-1+2 i$
$=2 i \quad \ldots(1)$
Since this is not a positive integer,
For $n=4$,
$z^{4}=(1+i)^{4}$
$=\left[(1+i)^{2}\right]^{2}$
$=(2 i)^{2}$ [Using (1)]
$=4 i^{2}$
$=-4 \quad \ldots(2)$
This is a negative integer.
For $n=8$,
$z^{8}=(1+i)^{8}$
$=\left[(1+i)^{4}\right]^{2}$
$=(-4)^{2}$
= 16
This is a positive integer.
Thus, $z=\left(\frac{2 i}{1+i}\right)^{n}$ is positive for $n=8$.
Therefore, 8 is the least positive integer such that $\left(\frac{2 i}{1+i}\right)^{n}$ is a positive integer.