Question:
The intersection of three lines $x-y=0, x+2 y=3$ and $2 x+y=6$ is a
Correct Option: , 3
Solution:
$L_{1}: x-y=0$
$L_{2}: x+2 y=3$
$\mathrm{L}_{3}: \mathrm{x}+\mathrm{y}=6$
on solving $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$ :
$\mathrm{y}=\mathrm{L}$ and $\mathrm{x}=1$
$\mathrm{L}_{1}$ and $\mathrm{L}_{3}$ :
$x=2$
$y=2$
$\mathrm{L}_{2}$ and $\mathrm{L}_{3}:$
$x+y=3$
$2 x+y=6$
$x=3$
$y=0$
$\mathrm{AC}=\sqrt{4+1}=\sqrt{5}$
$\mathrm{BC}=\sqrt{4+1}=\sqrt{5}$
$\mathrm{AB}=\sqrt{1+1}=\sqrt{2}$
so its an isosceles triangle