Question:
The integral $\int \frac{2 x^{3}-1}{x^{4}+x} d x$ is equal to :
(Here $\mathrm{C}$ is a constant of integration)
Correct Option: 3,
Solution:
Given integral, $I=\int \frac{\left(2 x^{3}-1\right) d x}{x^{4}+x}=\int \frac{\left(2 x-x^{-2}\right) d x}{x^{2}+x^{-1}}$
Put $x^{2}+x^{-1}=u \Rightarrow\left(2 x-x^{-2}\right) d x=d u$
$\Rightarrow I=\int \frac{d u}{u}=\log |u|+c=\log \left|x^{2}+x^{-1}\right|+c$
$=\log \left|\frac{x^{3}+1}{x}\right|+c$