Question:
The integral $\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x$ is equal to :
(where $\mathrm{C}$ is a constant of integration)
Correct Option: 2
Solution:
$\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x$
$\int \frac{\left(\frac{3}{x^{3}}+\frac{2}{x^{5}}\right) d x}{\left(2+\frac{3}{x^{2}}+\frac{1}{x^{4}}\right)^{4}}$
Let $\left(2+\frac{3}{x^{2}}+\frac{1}{x^{4}}\right)=t$
$-\frac{1}{2} \int \frac{\mathrm{dt}}{\mathrm{t}^{4}}=\frac{1}{6 \mathrm{t}^{3}}+\mathrm{C} \Rightarrow \frac{\mathrm{x}^{12}}{6\left(2 \mathrm{x}^{4}+3 \mathrm{x}^{2}+1\right)^{3}}+\mathrm{C}$