The hypotenuse of a right triangle is $3 \sqrt{10} \mathrm{~cm}$. If the smaller leg is tripled and the longer leg doubled, new hypotenuse wll be $9 \sqrt{5} \mathrm{~cm}$. How long are the legs of the triangle?
Let the length of smaller side of right triangle be $=x \mathrm{~cm}$ then larger side be $=y \mathrm{~cm}$
Then, as we know that by Pythagoras theorem
$x^{2}+y^{2}=(3 \sqrt{10})^{2}$
$x^{2}+y^{2}=90$ .......(1)
If the smaller side is triple and the larger side be doubled, the new hypotenuse is $9 \sqrt{5} \mathrm{~cm}$
Therefore,
$(3 x)^{2}+(2 y)^{2}=(9 \sqrt{5})^{2}$
$9 x^{2}+4 y^{2}=405 \ldots \ldots(2)$
From equation (1) we get $y^{2}=90-x^{2}$
Now putting the value of $y^{2}$ in equation (2)
$9 x^{2}+4\left(90-x^{2}\right)=405$
$9 x^{2}+360-4 x^{2}-405=0$
$5 x^{2}-45=0$
$5\left(x^{2}-9\right)=0$
$x^{2}-9=0$
$x^{2}=9$
$x=\sqrt{9}$
$=\pm 3$
But, the side of right triangle can never be negative
Therefore, when $x=3$ then
$y^{2}=90-x^{2}$
$=90-(3)^{2}$
$=90-9$
$=81$
$y=\sqrt{81}$
$=\pm 9$
Hence, length of smaller side of right triangle be $=3 \mathrm{~cm}$ then larger side be $=9 \mathrm{~cm}$