Question:
The hypotenuse of a right-angled triangle is 1 metre less than twice the shortest side. If the third is 1 metre more than the shortest side, find the sides of the triangle.
Solution:
Let the shortest side be $x \mathrm{~m}$.
Therefore, according to the question:
Hypotenuse $=(2 x-1) \mathrm{m}$
Third side $=(x+1) \mathrm{m}$
On applying Pythagoras theorem, we get:
$(2 x-1)^{2}=(x+1)^{2}+x^{2}$
$\Rightarrow 4 x^{2}-4 x+1=x^{2}+2 x+1+x^{2}$
$\Rightarrow 2 x^{2}-6 x=0$
$\Rightarrow 2 x(x-3)=0$
$\Rightarrow x=0$ or $x=3$
The length of the side cannot be 0; therefore, the shortest side is 3 m.
Therefore,
Hypotenuse $=(2 \times 3-1)=5 \mathrm{~m}$
Third side $=(3+1)=4 \mathrm{~m}$