The height of a tower is 100 m. When the angle of elevation of the sun changes from 30° to 45°, the shadow of the tower becomes x metres less. The value of x is
(a) $100 \mathrm{~m}$
(b) $100 \sqrt{3} m$
(c) $100(\sqrt{3}-1) m$
(d) $\frac{100}{3} m$
The given situation can be represented as,
Here, AB is the tower of height meters.
When angle of elevation of sun changes from $\angle D=30^{\circ}$ to $\angle C=45^{\circ}, C D=x$.
We assumed that $B C=y$
Here we have to find the value of $x$
So we use trigonometric ratios.
In a triangle,
$\Rightarrow \tan C=\frac{A B}{B C}$
$\Rightarrow \tan 45^{\prime}=\frac{A B}{B C}$
$\Rightarrow \mathrm{I}=\frac{100}{y}$
$\Rightarrow y=100$
Again in a triangle ABD,
$\Rightarrow \tan D=\frac{A B}{B C+C D}$
$\Rightarrow \tan 30^{\circ}=\frac{100}{x+y}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{100}{x+y}$
$\Rightarrow 100 \sqrt{3}=x+y$
$\Rightarrow 100 \sqrt{3}=x+100$
$\Rightarrow x=100(\sqrt{3}-1)^{\mathrm{P}}$ Put $x=100$
Hence the correct option is c.