Question:
The height of a cylinder is 14 cm and its curved surface area is 264 cm2. The volume of the cylinder is
(a) 308 cm3
(b) 396 cm3
(c) 1232 cm3
(d) 1848 cm3
Solution:
(b) $396 \mathrm{~cm}^{3}$
Curved surface area $=264 \mathrm{~cm}^{2}$.
Let r cm be the radius of the cylinder.
Then we have:
$2 \pi r h=264$
$\Rightarrow 2 \times \frac{22}{7} \times r \times 14=264$
$\Rightarrow r=\frac{264 \times 7}{44 \times 14}=3 \mathrm{~cm}$
$\therefore$ Volume of the cylinder $=\frac{22}{7} \times 3^{2} \times 14$
$=22 \times 9 \times 2$
$=396 \mathrm{~cm}^{3}$