The general solution of the equation

Question:

The general solution of the equation $7 \cos ^{2} x+3 \sin ^{2} x=4$ is

(a) $x=2 n \pi \pm \frac{\pi}{6}, n \in Z$

(b) $x=2 n \pi \pm \frac{2 \pi}{3}, n \in Z$

(c) $x=n \pi \pm \frac{\pi}{3}, n \in Z$

(d) none of these

Solution:

(c) $x=n \pi \pm \frac{\pi}{3}, n \in Z$

Given:

$7 \cos ^{2} x+3 \sin ^{2} x=4$

$\Rightarrow 7 \cos ^{2} x+3\left(1-\cos ^{2} x\right)=4$

$\Rightarrow 7 \cos ^{2} x+3-3 \cos ^{2} x=4$

$\Rightarrow 4 \cos ^{2} x+3=4$

$\Rightarrow 4\left(1-\cos ^{2} x\right)=3$

$\Rightarrow 4 \sin ^{2} x=3$

$\Rightarrow \sin ^{2} x=\frac{3}{4}$

$\Rightarrow \sin x=\frac{\sqrt{3}}{2}$

$\Rightarrow \sin x=\sin \frac{\pi}{3}$

$\Rightarrow x=n \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z}$

Leave a comment