Question:
The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{x}+e^{-y}=\mathrm{C}$
B. $e^{x}+e^{y}=\mathrm{C}$
C. $e^{-x}+e^{y}=\mathrm{C}$
D. $e^{-x}+e^{-y}=\mathrm{C}$
Solution:
$\frac{d y}{d x}=e^{x+y}=e^{x} \cdot e^{y}$
$\Rightarrow \frac{d y}{e^{y}}=e^{x} d x$
$\Rightarrow e^{-y} d y=e^{x} d x$
Integrating both sides, we get:
$\int e^{-y} d y=\int e^{x} d x$
$\Rightarrow-e^{-y}=e^{x}+k$
$\Rightarrow e^{x}+e^{-y}=-k$
$\Rightarrow e^{x}+e^{-y}=c$ $(c=-k)$
Hence, the correct answer is A.