Question:
The general solution of the differential equation $\frac{y d x-x d y}{y}=0$ is
A. $x y=C$
B. $x=C y^{2}$
C. $y=C x$
D. $y=C x^{2}$
Solution:
The given differential equation is:
$\frac{y d x-x d y}{y}=0$
$\Rightarrow \frac{y d x-x d y}{x y}=0$
$\Rightarrow \frac{1}{x} d x-\frac{1}{y} d y=0$
Integrating both sides, we get:
$\log |x|-\log |y|=\log k$
$\Rightarrow \log \left|\frac{x}{y}\right|=\log k$
$\Rightarrow \frac{x}{y}=k$
$\Rightarrow y=\frac{1}{k} x$
$\Rightarrow y=C x$ where $C=\frac{1}{k}$
Hence, the correct answer is C.