Question:
The function of time representing a simple
harmonic motion with a period of $\frac{\pi}{\omega}$ is :
Correct Option: , 4
Solution:
Time period $\mathrm{T}=\frac{2 \pi}{\omega^{\prime}}$
$\frac{\pi}{\omega}=\frac{2 \pi}{\omega^{\prime}}$
$\omega^{\prime}=2 \omega \rightarrow$ Angular frequency of SHM
Option (3)
$\sin ^{2} \omega \mathrm{t}=\frac{1}{2}\left(2 \sin ^{2} \omega \mathrm{t}\right)=\frac{1}{2}(1-\cos 2 \omega \mathrm{t})$
Angular frequency of $\left(\frac{1}{2}-\frac{1}{2} \cos 2 \omega t\right)$ is $2 \omega$
Option (4)
Angular frequency of SHM
$3 \cos \left(\frac{\pi}{4}-2 \omega t\right)$ is $2 \omega$
So option (3) \& (4) both have angular frequency $2 \omega$ but option (4) is direct answer.