Question:
The function $t$ is defined by $f(x)=\left\{\begin{aligned} 1-x, & x<0 \\ 1 \quad, & x=0 . \text { Draw the graph of } f(x) . \\ x+1, & x>0 \end{aligned}\right.$
Solution:
Here,
f (x) = 1 – x for x < 0. So,
$f(-4)=1-(-4)=5$
$f(-3)=1-(-3)=4$
$f(-2)=1-(-2)=3$
$f(-1)=1-(-1)=2$ etc.
Also, $f(x)=1$ for $x=0$
Lastly, $f(x)=x+1$ for, $x>0$.
and $f(1)=2, f(2)=3, f(3)=4, f(4)=5$ and so on.
Thus, the graph of f is as shown below: